JPMC 1 Market Maven

Fall 2024 Al Studio

Simona Isakova, Jasmine Khalil, Carly Kiang, Zoe Krishtul, Samhitha Sangaraju

Student Team

Samhitha Sangaraju
BS, Computer Science and Data
Science - Rutgers University

<u>Iasmine Khalil</u>
BS, Electrical Engineering
- Penn State University

<u>Carly Kiang</u>
BS, Computer Science - Columbia
University

<u>Simona Isakova</u> BS, Computer Science - CCNY

JPMORGAN CHASE & CO.

Zoe Krishtul
BS, Computer Science and Cognitive
Science - University of Central Florida

Challenge Advisors and TA

Seoyoung Kyung - Applied AI/ML Lead at JPMorgan Chase & Co

<u>Jatindeep Singh</u> - Applied AI/ML Lead at JPMorgan Chase & Co

<u>Shrey Verma</u> - Master's Degree Student at Cornell Tech

JPMORGAN Chase & Co.

Challenge Summary

<u>Predicting closing price movements for Nasdaq listed stocks</u> during the <u>critical</u> final ten minutes of trading — Heightened volatility and rapid price fluctuations, which significantly impact the day's economic outcomes.

<u>Real-World Application:</u> Mirrors <u>real-world challenges</u> faced by financial professionals who must make <u>quick</u>, <u>data-driven decisions under pressure</u>.

Why Use Machine Learning and Business Context

Machine learning algorithms are great at uncovering **intricate patterns** and **relationships** between data **-- enhanced accuracy** which is very useful when forecasting future trends.

- Financial institutions and tech companies are <u>driving AI/ML integration</u>, algorithmic trading, and ESG-focused <u>investing in FinTech</u>.
- As a global finance leader, JP Morgan emphasizes innovation, market leadership, and risk management, guided by integrity, responsibility, and client-centricity.

<u>Market Efficiency</u>, <u>Price accuracy</u>, and <u>market accessibility</u> during volatile periods -- Maintains <u>trust and stability</u> in financial markets.

Project Goals

<u>Supervised learning</u> focused on <u>regression</u>: Specifically, predict the future price movements of stocks relative to a synthetic index, based on historical data from the order book and closing auction.

• Understanding Data (Exploratory Data Analysis): Understanding Target Function and Components of Target Function (Stock Return V/S Index Return)

$$Target = \left(\frac{StockWAP_{t+60}}{StockWAP_{t}} - \frac{IndexWAP_{t+60}}{IndexWAP_{t}}\right) * 10^{4}$$

- **Feature Engineering and Correlation Analysis:** Understanding Calculated Features (Rolling Average, Volatility) and their effect on Components of Target Function.
- **Developing Regression Models :** Build and evaluate models to predict the target. Implement models: LightGBM, GRU, Random Forest, XGBOOST, Catboost to highlight the best-performing model using MAE comparison.

Introducing the Dataset

- **Data Background:** The dataset focuses on the high-stakes last 10-minute closing auction on Nasdaq, where volatility peaks as prices settle. These prices are refined using order book and auction data.
- **Data Source and Description:** Provided by Kaggle, this dataset includes historical auction data, with a synthetic index based on Nasdaq-listed stocks, aimed at understanding price movements during the market close
- **Features Included:** Numeric features cover stock identifiers, time markers, price and volume metrics, bid-ask spread, imbalance indicators etc., all essential for analyzing auction dynamics and closing price behavior. We are predicting the "target" column with regression modeling.

	volume_weighted_price	reference_price	wap	near_price	stock_id	date_id	seconds_in_bucket	imbalance_size	imbalance_buy_sell_flag	matched_size .	ro	ow_id	bid_ref_price_diff
0	5.663061e-08	0.999812	1.0	1.000241	0	0	0	3.180603e+06	1	13380277.00 .	(0_0_0	0.000000
1	6.951083e-09	0.999896	1.0	1.000241	1	0	0	1.666039e+05	-1	1642214.25 .	(0_0_1	0.000000
2	7.698351e-09	0.999561	1.0	1.000241	2	0	0	3.028799e+05	-1	1819368.00 .	(0_0_2	-0.000158
3	7.786061e-08	1.000171	1.0	1.000241	3	0	0	1.191768e+07	-1	18389746.00 .	(0_0_3	-0.000172
4	7.557200e-08	0.999532	1.0	1.000241	4	0	0	4.475500e+05	-1	17860614.00 .	(0_0_4	-0.000138

JPMorgan Chase & Co.

bid_ref_price_ratio	ref_price_ma_5	price_momentum	bid_size_volume_ratio	imbalance_volume_interaction	day_of_week	hour_of_day	price_volatility
1.000000	0.999794	0.000084	0.004533	4.255735e+13	0	0	0.000263
1.000000	0.999794	0.000084	0.001969	2.735993e+11	0	0	0.000263
0.999842	0.999794	-0.000335	0.020862	5.510500e+11	0	0	0.000263
0.999828	0.999794	0.000610	0.000126	2.191631e+14	0	0	0.000263
0.999862	0.999794	-0.000639	0.000923	7.993517e+12	0	0	0.000263

Cleaning the Data: Interpolation, Imputation

First Method: -1 Imputation

- Replaced all NaN values with -1 to indicate that the element was missing when data was collected.

	MAE Train	MAE Test
Model with -1 Imputation	XXX	XXX
Model with linear interpolation	XXX	XXX

Second Method: Linear Interpolation

- Used a **rolling average** for all columns but columns with **first element missing** required an alternate approach.
- Correlation between this column and all remaining numeric columns.
- Linear interpolation using column with **highest correlation value.**

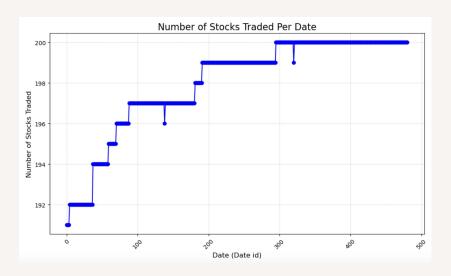
Dataset Story/Analysis

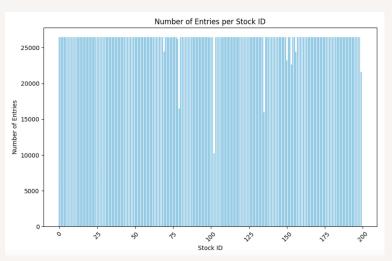
- **Predicting Price Trends:** It anticipates price trends during high volatility, helping with strategies like arbitrage and risk management
- **Pattern Insights:** The model reveals trends in volume, volatility, and momentum, offering a broader view of market behavior beyond closing prices.
 - o Investigating why the MAE values are different for certain days...were there any impactful societal happenings?
- Our modeling provides greater clarity behind the last-minute price movements, enabling data-driven decisions that can improve market predictions, fairness, and trader confidence

Dataset Story/Analysis

Analyzing Volume

- 1. How does the number of stocks traded each day vary?
- 2. Are there differences in the number of trades for each stock id?





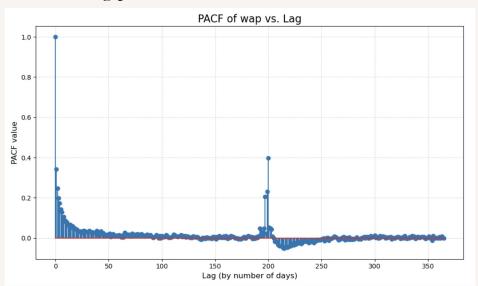
Later date id's had a higher number of stocks traded

Stock ID with the minimum count: 102 Count: 10230

Dataset Story/Analysis

Analyzing Time Series:

- Are there particular lags that are significant?
- Data spans across ~480 days, plotted partial autocorrelation across 365 days (1 year)
- A Partial Autocorrelation Function (PACF) plot highlights significant lags in WAP, indicating potential relevance to WAP.



The most significant lag is 200 days with a PACF value of 0.39815938083802327

Feature Engineering

New Features: Times Series

day_of_week

As explained later, day_of_week has a relatively significant correlation with the Target function.

hour_of_day

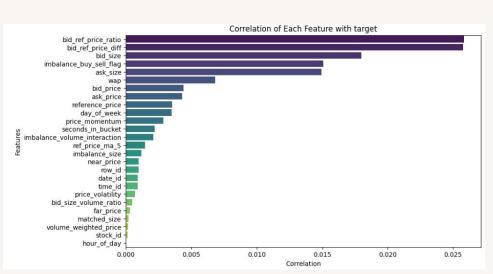
On the other hand, hour_of_day does not have a relatively significant correlation with the Target function.

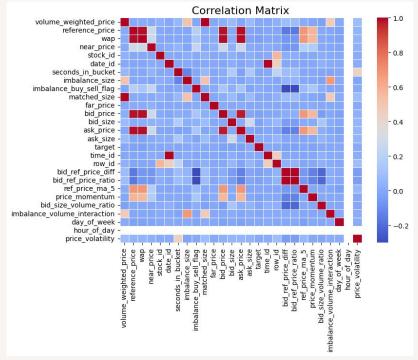
```
data['bid_ref_price_diff'] = data['bid_price'] - data['reference_price']
data['bid_ref_price_ratio'] = data['bid_price'] / data['reference_price']
data['ref_price_ma_5'] = data['reference_price'].rolling(window=5).mean()
data['price_momentum'] = data['reference_price'].diff()
data['volume_weighted_price'] = (data['reference_price'] * data['matched_size']) / data['matched_size'].sum()
data['bid_size_volume_ratio'] = data['bid_size'] / data['matched_size']
data['imbalance_volume_interaction'] = data['imbalance_size'] * data['date_di'] % 7
data['day_of_week'] = data['date_id'] % 7
data['hour_of_day'] = (data['seconds_in_bucket'] // 3600) % 24
data['price_volatility'] = data['reference_price'].rolling(window=5).std()
```


Feature Selection & Importance

Currently, we have kept all of our features because we did not add a large number of new features to the dataset.

However, we still explored **feature importance** between all columns and the Target column as well as a correlation matrix to have an idea of the **impact** each feature has on the outcome of the Target as well as each other.





Modeling Results

- LightGBM
- XGboost
- Catboost
- Random Forest
- GRU

	Mean Abs. Error: Train	Mean Abs. Error: Test	
LightGBM linear interpolation	6.287039	6.301912	
LightGBM -1 Imputation	6.286259	6.300450	
XGBoost linear interpolation	6.104001	6.188764	
XGBoost -1 imputation	6.111118	6.193579	
Catboost linear interpolation	6.503802	6.046937	
Catboost -1 Imputation	6.503802	6.046937	
Random Forest linear interpolation	6.828563	6.732851	
Random Forest -1 imputation	6.842371	6.827611	
GRU linear interpolation	6.5529701	6.203946	
GRU -1 imputation	6.5508523	6.201512	

GRU Experimentation

- Initially used 1 GRU layer for results shown previously (simple model)
- Hypothesis: Would using multiple layers result in a lower MAE score?

GRU -1 imputation	Mean Abs. Error Train	Mean Abs. Error Test		
1 layer	6.5508523	6.201512		
5 layers	6.5478053	6.198259		

• The reduction in MAE was minimal and did not justify the significant increase in computational resource requirements

Pros and Cons of Best Performing Models

• Catboost and XG Boost

Catboost Pros:

- Effective handling of categorical features
- Handles imbalanced data well
- Avoids overfitting
- Robust against noisy data

Catboost Cons:

- Resource intensive
- Longer training time on CPU
- Feature interaction complexity
- May not be optimal for pure numerical data

XGBoost Pros:

- High accuracy
- Efficient and scalable
- Versatile for various tasks
- Handles missing data effectively

XGBoost Cons:

- Complex tuning
- Resource-intensive
- Prone to overfitting
- Low interpretability

Ensemble Model Results

- LightGBM
- Catboost
- XGboost
- GRU
- Random Forest

	Mean Abs. Error Train	Mean Abs. Error Test
-1 Imputation	6.0702	6.1962
Linear Interpolation	6.0587	6.1910

Conclusions

- **Best performing models:** XGBoost, Catboost
- The **ensemble model** also performed very well comparatively

Thank You! Any Questions?

